The Postdoc Perspective was a blog for the Physics and Astronomy Department at McMaster University in Canada that I kept while I was a postdoctoral researcher. Many of the topics were talks presented at the McMaster Origins Institute seminar series.
Despite what you may have claimed over coffee this morning, 18 million years of evolution separates your landlord from a gibbon. If it's any consolation, he's only about 5 million years from a chimpanzee. After that time, our own branch of the tree-of-life evolves through a series of distinct 'hominids' before producing grad students.
But who were our ancestors and what did they look like? Is it possible to distinguish them from other branches of the ape family tree?
This was the topic of today's Origins Seminar, given by Dr Dean Falk from the School for Advanced Research in Sante Fe, New Mexico. Dr Falk is what is referred to as a 'paleoneurologist', a peculiar sounding term for someone who studies fossilized brains. Ancient remains of mammals can have a cast of their brain (known as an 'endocast') preserved via sand and other debris filling the cavity between skull and tissue. This hard coating is protected from weathering by the fossilised skull which slowly wears away, leaving the natural endocast in its wake.
The process of analysing an endocast is not an easy one since it is only an imprint of the brain's surface, so no internal information regarding the neurons or chemical structure is preserved. However, by comparing endocasts from humans and apes with those from ancient remains, much can be learnt about our own evolution.
Of course, it does help if the ancient remains you are studying are not fake. A famous example of this situation is the "Piltdown Man". Discovered in the UK in 1912 in Piltdown, East Sussex, these fossilised remains were exposed as a forgery in 1953. Rather than being the missing link between humans and chimpanzees, this skeleton was created from a human skull attached to an orangutan's jaw. The teeth had been filed down and the bones stained to look like a single specimen. In part, its success as a hoax was due to it fitting in with the preconceived idea that a measure of evolution was the brain-case size; the prevailing belief was that brains became bigger first and the rest of the body, including the jaw, changed afterwards. The discovery was also pleasing to local scientists who embraced the idea that the first human was an Englishman!
In reality, however, the first hominids were found in Africa. Ten years after the 'discovery' of Piltdown Man, Raymond Arthur Dart discovered the remains of the 'Taung Child' in South Africa; a fossil dating back 2-3 million years. With its small ape-sized brain and location far from England, the Taung Child contradicted everything seen in the Piltdown Man, making it a controversial discovery. Dart examined the brain endocast and concluded that, while the brain was relatively small, it was advanced due to its structure. In particular, he identified two groves whose positions matched those found in humans but not in apes.
Ultimately, Dart's analysis was proved to only be partially right, but the technique of examining the position of the brain's major groves (sulcal patterns) is the main way of differentiating hominid brains from our ape cousins. These differences come about as regions of the brain that were previously separated become more interconnected in humans.
Interestingly, our own ancestors were not the only bipedal species walking around Africa 300 million years ago. Paranthropus are thought to be an extinct hominid species, unrelated to us. Their brains were characterised by a prominent central ridge from which strong jaw muscles would have been attached. Our relatives were the Australopithecus africanus, of which the Taung Child is an example. The migration and spread of A. africanus is thought to be north out of Africa and then into Europe and Asia. This has been called into question recently, however, by the discovery of a hobbit.
The announcement of the three feet tall hominid remains found in Indonesia came in 2004. The attractively named, "Lb1" was female with very short legs and therefore seemingly disproportionate long arms. Her feet were genuinely long, stretching a length equal to the distance between her knee and ankle. The remains were found with primative tools, similar to those found in Africa, and she would have lived alongside giant Komodo dragons, which is a slightly unnerving prospect for someone only three foot high.
At 417 cubic centimetres, Lb1's brain was chimp sized but the endocast revealed advanced features reminiscent of a human over an ape. Her discovery opens many questions, with schools of thought differing over whether Lb1 can be a new human species from our ancestry when her brain is small and she was found so far from the picture of migration out of Africa.
One thing that appears to be clear from the endocast discoveries is that brain evolution can occur in many different ways. It is possible to rewire and reorganise our grey matter without it becoming larger. This leads to different combinations throughout the fossil history; a difficult challenge to place in logical order. So in short, size does matter, but it's not just about how much you've got. It's what you're doing with it that counts.
But who were our ancestors and what did they look like? Is it possible to distinguish them from other branches of the ape family tree?
This was the topic of today's Origins Seminar, given by Dr Dean Falk from the School for Advanced Research in Sante Fe, New Mexico. Dr Falk is what is referred to as a 'paleoneurologist', a peculiar sounding term for someone who studies fossilized brains. Ancient remains of mammals can have a cast of their brain (known as an 'endocast') preserved via sand and other debris filling the cavity between skull and tissue. This hard coating is protected from weathering by the fossilised skull which slowly wears away, leaving the natural endocast in its wake.
The process of analysing an endocast is not an easy one since it is only an imprint of the brain's surface, so no internal information regarding the neurons or chemical structure is preserved. However, by comparing endocasts from humans and apes with those from ancient remains, much can be learnt about our own evolution.
Of course, it does help if the ancient remains you are studying are not fake. A famous example of this situation is the "Piltdown Man". Discovered in the UK in 1912 in Piltdown, East Sussex, these fossilised remains were exposed as a forgery in 1953. Rather than being the missing link between humans and chimpanzees, this skeleton was created from a human skull attached to an orangutan's jaw. The teeth had been filed down and the bones stained to look like a single specimen. In part, its success as a hoax was due to it fitting in with the preconceived idea that a measure of evolution was the brain-case size; the prevailing belief was that brains became bigger first and the rest of the body, including the jaw, changed afterwards. The discovery was also pleasing to local scientists who embraced the idea that the first human was an Englishman!
In reality, however, the first hominids were found in Africa. Ten years after the 'discovery' of Piltdown Man, Raymond Arthur Dart discovered the remains of the 'Taung Child' in South Africa; a fossil dating back 2-3 million years. With its small ape-sized brain and location far from England, the Taung Child contradicted everything seen in the Piltdown Man, making it a controversial discovery. Dart examined the brain endocast and concluded that, while the brain was relatively small, it was advanced due to its structure. In particular, he identified two groves whose positions matched those found in humans but not in apes.
Ultimately, Dart's analysis was proved to only be partially right, but the technique of examining the position of the brain's major groves (sulcal patterns) is the main way of differentiating hominid brains from our ape cousins. These differences come about as regions of the brain that were previously separated become more interconnected in humans.
Interestingly, our own ancestors were not the only bipedal species walking around Africa 300 million years ago. Paranthropus are thought to be an extinct hominid species, unrelated to us. Their brains were characterised by a prominent central ridge from which strong jaw muscles would have been attached. Our relatives were the Australopithecus africanus, of which the Taung Child is an example. The migration and spread of A. africanus is thought to be north out of Africa and then into Europe and Asia. This has been called into question recently, however, by the discovery of a hobbit.
The announcement of the three feet tall hominid remains found in Indonesia came in 2004. The attractively named, "Lb1" was female with very short legs and therefore seemingly disproportionate long arms. Her feet were genuinely long, stretching a length equal to the distance between her knee and ankle. The remains were found with primative tools, similar to those found in Africa, and she would have lived alongside giant Komodo dragons, which is a slightly unnerving prospect for someone only three foot high.
At 417 cubic centimetres, Lb1's brain was chimp sized but the endocast revealed advanced features reminiscent of a human over an ape. Her discovery opens many questions, with schools of thought differing over whether Lb1 can be a new human species from our ancestry when her brain is small and she was found so far from the picture of migration out of Africa.
One thing that appears to be clear from the endocast discoveries is that brain evolution can occur in many different ways. It is possible to rewire and reorganise our grey matter without it becoming larger. This leads to different combinations throughout the fossil history; a difficult challenge to place in logical order. So in short, size does matter, but it's not just about how much you've got. It's what you're doing with it that counts.